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A B S T R A C T   

Within the automotive industry, there are efforts to replace glass fiber composites to a greener yet lightweighted 
natural fibres as they could be reducing the environmental impacts. To know if these replacements are envi-
ronmentally friendlier and how much they reduce the emissions within the life cycle of the vehicle, the gold 
standard is a life cycle assessment (LCA) based greenhouse gas emissions. LCA is a valuable tool, However, this 
method is time consuming, we have to address too many details, and it could get really complicated to perform. 
Artificial intelligence seems to be a very promising discipline that can easily predict a complicated inquiry. In this 
article, we have used machine learning to compare and predict the greenhouse emissions of replacing these 
materials in automotive parts. This work is unique in that it processes very limited input data, in contrast to the 
usual machine learning dataset. This limited data usually deter researchers from solving these kinds of problems, 
however, it enables us to test several artificial intelligence algorithms and input matrices to quickly predict the 
greenhouse gas emissions for our LCA based greenhouse gas emission saving predictions. Even though this 
method is not conventional and needed further discussions and testing, it is showing a very promising and easy 
way to predict the accurate greenhouse gas saving of these materials quickly and prior to the design of the auto 
parts.   

1. Introduction 

Artificial intelligence (AI) is the field that deals with machines that 
are capable of showing intelligent behaviours such as problem-solving 
and learning [1]. This interesting field of study is re-emerging from a 
hibernating state, and today is a hot topic in science again, with more 
computation power, better algorithms, and more data collected. An AI 
system was able to defeat a human in the game of Go [2], which even 
five years ago was viewed as highly unlikely. AI has many applications: 
it can use natural language processing, as in Apple’s Siri or Google’s AI 
assistant, computer vision like in some self-driving cars and drones, 
pattern recognition for credit card fraud detection, and very important 
applications in modelling, simulations, and predictions like stock market 
predictions and weather forecasting [3]. Many of these recent 

applications fall into the category of AI called machine learning (ML). 
Like AI itself, ML is not a new field either; the word “machine learning” 
was coined back in 1959. ML is defined as “The ability to learn without 
being explicitly programmed” [4]. As the world produces more and 
more data every second, machine learning is helping us to process these 
data; in fact, with the advent of the internet of things, there is no other 
way to deal with these zettabytes of data. ML contains three major types 
of learning: supervised, unsupervised, and reinforcement learning. Su-
pervised learning involves showing the data to the computer under su-
pervision and letting the computer know how it is performing, and the 
machine is responsible for learning the rules by annotated samples [5]. 
On the other hand, unsupervised learning is like a school in which the 
student starts to see the data and tries to figure it out without supervi-
sion; sometimes, the algorithm will recognize a pattern that is 
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impossible for a human to discover [6]. Reinforcement learning is the 
type of learning that provides feedback in terms of reward or punish-
ment while the algorithm is learning [7]. 

Many algorithms exist in the domain of machine learning [8]. Some 
algorithms are designed as general, and some have very specific uses [9]. 
There is a known “no free lunch” theorem, which means that there is no 
single algorithm for all prediction modelling [10], and therefore a range 
of algorithms should be cross validated to find the best solution. 

Regardless of the name, most algorithms can be categorized as per-
forming three main tasks: regression, classification, and clustering. The 
current paper deals with a regression, which is a supervised modelling 
and prediction problem. In every regression problem, there are some 
known data that will help the algorithm in the prediction. As was 
mentioned, there are many different algorithms for regression; the most 
important ones are discussed briefly below. 

Linear regression is the simplest and most well-known algorithm for 
regression. This is a powerful algorithm, especially if the relationship 
between the data is linear. A familiar form of this algorithm is a 
regression line for two types of variables. For this algorithm, overfitting 
could cause problems; however, there are some regularizations available 
to punish the high coefficients and therefore avoid overfitting. This is 
not a good algorithm for non-linear relationships, and as the complexity 
increases, this model loses its accuracy. Variations of linear regression 
have been developed; for example, Bayesian linear regression, which 
analyzes the samples based on the Bayesian inference [11] or Poisson 
regression, also known as a log-linear model, and has a lot of application 
in counting data [12]. 

Decision trees simply split the data into branches and maximize the 
information gain. This model follows several simple steps of branching, 
which makes it a good model for non-linear relationships. There are 
variations in this method, and sometimes a model will use more than one 
tree, which is called a decision forest or boosted decision trees. It has 
been reported that the decision forest has good performance on various 
samples [13], while boosted decision trees, although harder to adjust, 
can beat the decision forest in performance [14]. The tree-based tech-
niques are very strong, and they have been a go-to algorithm for classical 
problems in the past [13]. A single tree is pruned for overfitting prob-
lems, and they are often inhibited by memory size or branches to avoid 
memorizing the samples [15]. 

A neural network (NN) is a family of algorithms that have been 
adopted based on biological neural networks (brain). There is a network 
of connected nodes that weight each neuron based on the provided 
samples. One of the major drawbacks of the NN is the fact that they may 
stock in local minima, and we can’t be sure the solution is the best. The 
size of the network and the complexity of the problem will affect the 
performance of the NN. Designing an NN is not easy, and problems like 
overfitting and underfitting cause troubles [16]. 

A relatively newer approach is deep learning, which is a multi-layer 
neural network for solving complex problems. They are often used in 
problems by analyzing different complex data; however, these types of 
networks need lots of data, to begin with, and are not general-purpose 
algorithms. They should be fine-tuned for every purpose, and these 
networks are computationally expensive and harder to set up [17]. 
However, considering that computation power is growing, they seem to 
be a solution for big data analysis [18]. 

An emerging field of machine learning is “Information and commu-
nication technology for environmental sustainability” [19], which deals 
with predictions related to our environment. in this field, researchers try 
to model, simulate, and predict nature. Some of this research focuses on 
using different algorithms and even creating new algorithms to help 
explain and predict the environment better. An example of this work is 
an algorithm that has been used in global warming potential evalua-
tions. This algorithm is able to predict emissions within 10% of the full 
LCA [20]. ML has been used in the prediction of other environmental 
factors. For example, NN models were able to predict particulate matter 
in the air with a diameter of 10 μm or less (PM10) reliably and 

outperformed the linear regression [21]. ML also has been used to 
expand the normalization factors for the LCA. In order to model missing 
toxic chemicals characterization factors, researchers used Weka, which 
is an open-source machine learning software package [22]. There is also 
research on the Organization of the Petroleum Exporting Countries 
(OPEC) Carbon dioxide (CO2) emissions. In this research, an artificial 
neural network (ANN) was trained with the cuckoo search/particle 
swarm optimization algorithms. The researchers showed that the result 
of ANN’s trained prediction is comparable with the actual real emissions 
data [23]. 

Beside from classic LCA studies [24–26] there are several studies 
published on LCA using a type of AI technique in the field of agriculture. 
For example, researchers used a Multi-Objective Genetic Algorithm to 
estimate energy efficiency and also reduce the global warming potential 
from wheat farms [27] and wetland rice production [28] and more 
recently, Multi-Objective optimization of energy use and environmental 
emissions of walnut productions [29]. Recently, ANN was used to pre-
dict yield and greenhouse gas emissions of watermelon production, and 
the best network topology had a correlation coefficient of 0.969 and 
0.995, respectively [30]. Also, ANN has been used for energy con-
sumption and Greenhouse gas (GHG) emissions in wheat and claimed to 
reach a coefficient of 0.998 for GHG emissions [31]. It has also been used 
for the prediction of emissions and yield for kiwifruit production [32]. In 
another study, researchers created a meta-model to predict the emis-
sions of Nitrous oxide (N2O) (as a greenhouse gas) from farm soils and 
showed that the correlation coefficient for this model was 0.97 for maize 
and 0.91 for wheat farms [33]. 

AI also has been used to predict rainfall run-offs. Scientists compared 
different AI models like ANNs, and Adaptive Neuro-fuzzy Inference 
Systems (ANFIS) coupled with a wavelet transform [34], or even 
coupling adaptive ANFIS for the environmental impact of the wheat 
milling factories [35]. In another study, a decision tree was compared 
with ANN, and the result was in favour of ANN [36]. Even the daily pan 
evaporation has been predicted by several machine learning methods. 
Comparing the results of ANN, support vector regression, fuzzy logic, 
and ANFIS showed that fuzzy logic and support vector regression were 
the best methods for this particular prediction [37]. Drought index has 
been forecasted using a wavelet extreme learning machine. Here, they 
compared several models, including ANN and support vector machines 
and their wavelet transformed counterparts, and proved that their 
model outperforms all other compared models [38]. There are also re-
ports on hybrid models, for example, a hybrid of support vector machine 
and the firefly algorithm to predict global solar radiation [39]. In 
another study, a random forest algorithm has been used to map carbon 
via analyzing the remote sensed data. These researchers were able to 
couple spatial context to random forest and show that this has the best 
performance among the compared methods, including the random forest 
without spatial context [40]. 

Another group of well-studied algorithms is Bayesian principles. 
Bayesian networks have been reviewed in environmental modelling 
[41]. Also, there are case studies to compare Bayesian networks in 
environmental and resource management problems [42]. Bayesian 
networks have been studied for the prediction of fish and wildlife pop-
ulations [43]. In another study, the cons and pros of Bayesian networks 
in environmental modelling were discussed [44]. This study compares 
the advantages of these networks, such as the ability to mix different 
sources of knowledge, fast responses, explicit treatment of uncertainty 
and support for decision analysis, possibility of structural learning, and 
ability to handle small and incomplete datasets vs. the challenges, such 
as discretization of continuous variables, absence of feedback loops, and 
difficulty of structuring expert knowledge [44]. 

In environmental prediction, there is outstanding research on 
modelling and prediction of marine environments by means of machine 
learning algorithms, such as genetic algorithms, which are out of the 
scope of this research and can be found elsewhere [45–47]. A group of 
researchers combined LCA and AI to predict sugarcane’s environmental 
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impacts and output energy [48]. There is even research indicating the 
ability of ANN and model trees in the prediction of algal growth [49]. A 
similar study uses genetic programming and ANN for the prediction of 
harmful algal blooms [50]. Another researcher developed an aggregated 
boosted trees method and showed the application in ecological model-
ling predictions [51]. 

To the best of our knowledge, there has been no attempt to predict 
the GHG emission of fiber reinforced composites in the literature, which 
is the focus of this research. 

The goal of this research is to estimate the greenhouse gas emissions 
of natural/glass fiber reinforced automotive parts via several machine 
learning algorithms. We have performed and find the best machine 
learning algorithm despite the fact that our data was limited. There are 
not too many LCA-based GHG emission reports in the resources, which 
was a limiting problem for us, and its accuracy may change as there are 
more LCA data published; however, this problem empowered us to do 
the experiments that are not possible when you have lots of data and this 
will be not only a guide and steppingstone for the future and more ac-
curate predictions but also it will help us to know what type of data we 
need to collect more if we want to have a better predictions. While 
lightweighting of the car with these materials are well established, there 
are many details remain unknown. The result of this paper led to a better 
understanding of the relationship between emissions and weight and life 
cycle in automotive industry. 

2. Materials and methods 

2.1. Input matrix development and determination 

All the LCA-based GHG emissions studies related to glass/natural 
fiber reinforced composite automotive parts (which usually result in 
lightweighting) were collected, and the necessary information was 
extracted and processed in the form of an input/output matrix (Table 1). 
Then we used this matrix as the source for several input/output 
matrices. As different resources report the GHG emission in different 
ways, it was not easy to compare this data; therefore, we changed the 
GHG emissions to a relative number indicating the percentage of the 
CO2eq saved/emitted if we shifted from glass fiber to natural fiber 
composite. In this way, we could compare the input data regardless of 
the country, electricity grid mix, and any assumptions that may make 
the results otherwise incomparable. 

At the early stage, it was obvious that every LCA has its own details 
and is unlikely to predict the exact number of impact categories directly; 
therefore, the matrix was pre-processed to show the results of LCA as the 
percentage of each other. In this case, even though we lose the ability to 
predict for single materials, we can still compare the parts as percent-
ages of each other’s emissions. 

For the purpose of validation of the results of predictions, we have 
performed LCA-based GHG emissions for some of the automotive parts. 
For the validation of the model, we have also used the holdout method 

for cross-validation of the data sets. 
To determine the best combination for input/output, several input 

matrices were tested to find the best matrix as an input. Among all the 
input data possibilities after a preliminary study, we selected three 
different inputs, and the analysis represented in this publication is based 
on these inputs. A description of the input matrices is shown in Table 1. 

We also tested two different levels of skewed data to see the effect of 
the limited amount of data in our machine learning models, which will 
be discussed further. Although skewed data is not standard practice for 
these types of predictions, in the field of machine learning, it is really 
useful, especially for image recognition analysis, and it is simply skew-
ing the original data to increase the number of samples. 

2.2. Pre-processing data 

In this paper, predictions are based on the comparison of a glass fiber 
reinforced composite part with the lightweight natural fiber-reinforced 
counterpart within the same electricity grid mix, same transportation, 
etc. The essential input data contains the weight of the automotive parts 
(both current and lightweight version), mileage of the automobile 
driving phase (which was after preliminary study narrowed down to 
150,000 km to 290,000 km), and other data, including the energy de-
mands, were also used in the initial development of the models. 

In some of our trials, the data of the weight of resins and fibres (for 
both bio and current) were added together to create the general weight. 
We also examined the weight ratio or lightweighting percentage. 

Then the data were pre-processed and normalized (feature scaled). 
This is an important step because the weights are usually within kilo-
grams, and mileages are usually a six-digit number. It has been accepted 
as a common practice when the input data contains big numbers (the 
mileage in this study), the neural network can’t perform well, and the 
effect of the bigger number will dominate the results; therefore, a 
normalization step is usually essential. Using the following standard 
formula, mileage was normalized. We have evaluated the effect of 
normalization on the other inputs as well. Below is the standard 
normalization formula used in this study: 

Normalizedvalue = Low+
Actualvalue − Min

Max − Min
×(High − Low) (1)  

where Min is the minimum data (150,000 km for the mileage and 0.360 
kg for the weight of part) 

Max is the maximum data (290,000 km for the mileage and 6.75 kg 
for the weight of part) 

High is the new maximum (0.9) 
Low is the new minimum (0.1). 
The result of normalization is the new data sets, which have a dis-

tribution from 0.1 to 0.9. For example, 0.9 is the maximum for mileage 
and represents the driving cycle for a truck or a Sport Utility Vehicle 
(SUV) which is 290,000 km. 

We have also used a software-assisted feature, scaling, which rec-
ommends the following formula to normalize the mileage data, which 
after the comparison of the final results did not cause any difference 
from the standard method: 

y = 0.000006x − 0.7571 (2) 

To obtain better input/output data, all out-of-range data were 
trimmed and removed from the input files. These eliminated data were 
mostly very old studies that have different evaluations. Some of the 
trimmed data belonged to buses and big commercial trucks (with very 
high mileage), which should be out of the range that we are predicting. 
After this trimming, we normalized the original data and made them 
ready for the next step. Normalization also had another purpose: we 
wanted to scale the results from the lowest to highest globally. This 
study mainly predicts the parts that are made through the injection 
moulding process that usually weigh between 0.360 kg to 6.75 kg. 

Table 1 
The input/output matrices for this experiment.  

Input matrix 1 

Weight of 
lightweight 
resin 

Weight of 
natural 
fibres 

Weight of 
current 
resin 

Weight of 
glass 
fibres 

Mileage GHG 
emission   

Input matrix 2 

Weight of lightweight 
composite 

Weight of current 
composite 

Mileage 
GHG 
emission 

*   

Input matrix 3 

Lightweighting ratio Mileage GHG emission *  
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Please note that for the parts that have smaller weights, usually during 
the mould design, a grouping number is planned, and even though in our 
data there was a 5-gram auto part, it was combined into a set of 72, and 
the total weight was 0.361 kg when injection moulded. 

Due to the limited data, we did not want to lose any data because of 
the missing number; therefore, we used the average for the missing data 
first, which caused a problem known as snooping (leaking or revealing 
the output to the AI). Instead of using the average for the missing data, 
the median was used, and in this way, the leakage of data to the output 
was reduced in comparison to using the mean. 

2.3. Models 

After carefully selecting the list of the different classes of machine 
learning algorithms to predict and score the data sets, we performed a 
preliminary study to see the general performance and then we further 
limited our list of algorithms which will be discussed here. These algo-
rithms include linear regression, Bayesian regression, Poisson regres-
sion, neural network, boosted decision tree, and decision forest. The 
hyperparameters of the models were swept for the best combination. To 
fine-tune the hyperparameters, we also used the standard Taguchi 
design of the experience method. Then the best of each parameter was 
used for further experiments. The hyperparameters that were tested for 
each of the models are shown in Table 2. 

After finding the best combinations, these parameters were used for 
further analysis. All the comparisons of the models were based on the 
root mean squared error (RMSE) and mean absolute error (MAE), which 
were mostly comparable for our study. Generally, one of the important 
factors in choosing the best model is MAE, which is an error that eval-
uates how good the predictions are. The data was initially split into 70% 
training, 15% validation, and 15% testing. Then it was only split into 
80% for training and 20% for testing. All the models were trained using 
the training split and then evaluated by the 20% data that the model had 
not seen. The effect of the limited input data was studied by means of 
creating a skewed data set that was performed, which will be discussed 
in the result section; another aim for using skewed data was to study the 
possibility of using skewed data in these types of studies. 

All the data analysis performed, including the Taguchi method for 
predicting the best parameter for the models, was performed in Minitab 
17 [52]. 

3. Results and discussions 

For simplicity, we compare all the models based on RMSE compar-
isons, which is a standard practice in the field. 

3.1. Bayesian linear regression 

In this very simple yet powerful linear regression model, there is only 
one changeable parameter, which is regularization weight. The sweep 
result of changing regularization weight has been shown in Fig. 1. As 
you can see the error has minimum around a regularization weight of 10 

which is a match for our manual adjustment at 9. Bellow 0.1 the RMSE 
remain the same however after 10 it will increase linearly. 

3.2. Neural network 

With the neural network, we have four hyperparameters to change. 
These were the number of neurons, number of iterations, learning rate, 
and type of normalizer. As was mentioned, we perform a Taguchi test to 
evaluate the best combination throughout this research. The Taguchi 
test predicted that the best possible combination would be three neurons 
with 10,000 iterations with a learning rate of 0.01. The Gaussian 
normalizer has shown a significantly higher performance (Fig. 2). 
Generally, we found out that our neural network has a relatively reliable 
result, and the errors have minimum variance among the test 
replications. 

3.3. Linear regression 

As was mentioned for the linear regression, which is one of the 
simplest models, the available hyperparameter is the epoch, and we 
have measured it against the error. The result of error vs. epoch of 
training is shown in Fig. 3. As you can see the epoch training between 
100 and 250 in our data sample resulted the lowest error. Considering 
the simplicity of this model comparing to other models, the error was 
decent and the fact that it is easy to explain this model, makes it a good 
go to model for future works. 

3.4. Poisson 

For the Poisson, we have four hyperparameters to adjust (Optimi-
zation Tolerance, L1 Weight, L2 Weight, Memory Size) after sweeping 
for the best combination on each of the inputs. We set the combination at 
1000 different combinations and did the sweep for 10,000 replications. 
Then we chose the best combination by MAE and RMSE. One unique 
feature about this mode was that the same error could be reached by 
many of the combinations. Even though our data is not considered count 
data we kept Poisson in our modelling for the purpose of comparison. 

3.5. Boosted decision tree 

As it was mentioned the Taguchi method was used to have a pre-
diction about the hyper parameters. In boosted decision tree we have 
also used this method to estimate the most effective hyperparameters. 
The Taguchi method prediction for the best error is shown in Table 3. 
The experience was repeated 1000 times and the data are the average of 
the ten lowest errors for each input. Boosted decision trees are very 
strong and they are usually great for the predictions, However, our 
limited data seems to affect this model’s performance. 

3.6. Decision forest 

For the decision forest, we noticed that many variations of 

Table 2 
The machine learning algorithms and the hyperparameters that were tested in this study.  

ML algorithm Parameters 

Linear 
regression 

Epoch training     

Bayesian Regularization weights     
Poisson Optimization Tolerance L1 Weight L2 Weight Memory Size  
Boosted 

decision tree 
Maximum number of leaves 
per tree 

Minimum number of samples 
per leaf node 

Learning rate 
Total number of trees 
constructed  

Decision forest Resampling method Number of decision trees Maximum depth of the decision trees Number of random 
splits per node 

Minimum number of 
samples per leaf node 

Neural 
network 

Number of neurons in hidden 
layer (3, 4, 5, 6) 

Number of iteration 
(1,005,001,000 10,000) 

Normalizer type (Min/Max, Binning, 
Gaussian, Not normalizing) 

Learning rate   
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hyperparameters result in the lowest with MAE (0.09), and RMSE fluc-
tuates between 0.12 and 0.13. The averages for these were: 1.79 for the 
minimum number of samples per leaf node, 367.5 for the number of 
random splits per node, 17.17 for the maximum depth of decision trees, 
and 8.54 for the number of decision trees. As you have noticed, these 
averages are not telling us the whole story. What was seen was most of 
the samples per node were 1 or 2 with a few exceptions of 3 and 4. 
Therefore, we focused on these two numbers, and the averages for them 
were rounded to a true number here: The best-chosen parameters were 
2, 133, 10, 9 and 1, 475, 21, 11, which was very similar for inputs 1 and 
2 and for input 3. These results were compatible with the Taguchi 
experiment that we performed (Table 4) again here the numbers are an 
average of ten lowest error and the experiment repeated 1000 times. As 

an ensemble method as it was expected the decision forest performed 
better than our other ensemble model boosted decision tree. 

Fig. 4 shows a comparison for the lowest RMSE for different machine 
learning models. Except for linear regression and the Bayesian model, 
every other model responded better with inputs 1 and 2 and had a higher 
error with input 3. Based on these graphs, we can see that most of the 
models performed well with inputs 1 and 2; however, the Bayesian 
model did not perform as well as others. One noticeable thing was that 
the Bayesian provided a significantly better result for input 3, and this 
could be showing that this model can handle complex inputs better than 
the others. 

For a better understanding of the models after setting the hyper-
parameters, we created different combinations of the input data vs. 

Fig. 1. The plot shows the root mean squared error for the Bayesian model with different regularization weights from 0 to 1000.  

Fig. 2. The plot shows the result of the Taguchi analysis of hyperparameters. We have studied 3–6 neurons, 100–10,000 iterations, two typical learning rates 0.005 
and 0.01 and different normalizers including (not normalizing, Min/Max, Bin and Gaussian. The Root mean squared errors for the neural network model has been 
shown at the left bar. 
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validation data (which will not be seen by the model). Then we tested 
our models with these data and recorded the best and the worst per-
formances. Fig. 5 shows the best and the worst errors for these 
combinations. 

The performance of the machine learning algorithms can be seen in 
Fig. 6. As is shown, Bayesian regression is the worst model among all 
regardless of input matrix; however, other models’ performance was 
good. Choosing the best model is not straightforward, as the worst- 
performing models with higher standard deviation led to the lowest 
possible RMSE. A higher population standard deviation means that our 
result could have a higher error in some cases; this error will undermine 
the reliability and the accuracy of the models’ predictions. The model 
that has the lowest deviation is the neural network, followed by the 
decision forest for input 1 and Poisson regression for input 2. Generally 
speaking, the neural network, Poisson, and decision forest can all be 
used to make predictions. The boosted decision trees, in some cases, 
predict with an error and standard population deviation higher than was 
expected from the general performance of the model; even though forest 
models usually perform well in prediction, it is not the case here. 

3.7. Use of skewed data 

The skewed data was produced based on the random generation of 
numbers; however, the model was forced to keep the means and stan-
dard population deviations and the distribution of the original inputs to 
reduce the bias in the system. These random numbers (namely 84 and 
168) were mixed with the 28 original samples and then used for the 
purpose of training and evaluation. In one instance, the training per-
formed on the skewed data and the evaluation performed solely on the 
original data, and the difference in the RMSE was not statistically sig-
nificant, even though the latter tend to have lower RMSE. Having more 
data, has the potential to enhance the model performance (Fig. 7). 

3.8. Input matrices 

As was mentioned, to see a better picture of the effect of the input 
matrices, we used three different input matrices with different levels of 
detail. As you can see in Fig. 8, generally, with the exception of the 
Bayesian regression, inputs 2 and 1 are comparable, and input 1 is 
slightly better in most cases. It can also be inferred that some of the 
models here are more sensitive to the input; for example, the methods 
that use trees (random forest and boosted decision tree) predict similarly 
under the different types of inputs. Input 3 seems to lose some of the 
important details, and except for the linear regression, other models’ 
prediction power shows a reduced accuracy. 

3.9. Cross-validation of the models 

To check the general performance of the models in the prediction of 
unseen data, we used real-life data from the actual LCA results. In this 
cross-validation experiment, we calculated both RMSE and MSE and 
their relevant standard deviation (Fig. 9). 

As you can see, the results are comparable with previous calcula-
tions, and in terms of predictions’ accuracy, Bayesian regression is not 
an impressive model for this kind of prediction. Linear regression, on the 
other hand, shows an outstanding performance for these data. 

3.10. Knowledge extraction 

The next step here is to reverse engineer the algorithms to see how 
they are calculating and extracting the knowledge they have learned 
during the training and see how this model performs the prediction. 
Table 5 shows the extracted knowledge from the machine learning 
models. This table simply shows the formula that the AI algorithm uses 

Fig. 3. Figure shows error versus epoch for linear regression as you can see an epoch training of 100 to 250 has the lowest error.  

Table 3 
shows Taguchi predicted parameters for the boosted decision trees.   

Number of 
leaves 

Minimum leaf 
instances 

Learning 
rate 

Number of 
threes 

Input 
1 

5 3 0.35 99 

Input 
2 

5 2 0.22 100 

Input 
3 

4 2 0.10 64  

Table 4 
The predicted parameters for the decision forest models.   

Minimum 
number of 
samples per leaf 
node 

Number of 
random splits 
per node 

Maximum 
depth of 
decision trees 

Number of 
decision 
trees 

Input 1 
and 2 

1 475 21 11 

Input 1 
and 2 

2 133 10 9 

Input 3 1 295 14 10  
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to predict our emissions. 
As you can see the standard deviation of errors was the lowest in the 

neural network model, and the proofed to be a reliable model for our 
predictions. Please note that these table will change if we have different 
data sets and as more data become available a comparison of this table 
with the new one has the potential to show a trend in our future. 

3.11. Skewed data analysis 

The skewed analysis showed that having more data will help the 
accuracy of the system. In our experience, the RMSE is directly affected 
by the amount of input data. As more and more LCA is performed and 
published, the input file will grow, and this system will become more 

and more accurate. Even though skewed data is not a standard method 
for prediction studies we have used this as a test of our system with the 
increased number of inputs. 

4. Conclusions 

Machine learning can be really helpful in many fields; however, there 
are some fields that can’t use the advantage of machine learning like 
others. One of these fields is the prediction of greenhouse gases, which 
was studied here. The main reason that machine learning has not been 
developed in this field is the lack of sufficient data. After studying the 
literature, we figured out that there are less than 30 published papers 
that can be potentially used in this research, and out of that, half was old 

Fig. 4. Diagram of the machine learning models based on the root mean squared error. This diagram also contains information on the three main inputs and provides 
a visual comparison of the different input matrices. 

Fig. 5. Performance of the machine learning models. The diagram shows different models’ best and worst results and the means of the errors for the models: DT-B 
(Decision Tree Best), DT-W (Decision Tree Worst), NN-B (Neural Network Best), NN-W (Neural Network Worst), POI-B (Poisson Best), POI-W (Poisson Worst), DF-B 
(Decision Forest Best), DF-W (Decision Forest Worst). 

M. Akhshik et al.                                                                                                                                                                                                                                



Sustainable Materials and Technologies 31 (2022) e00370

8

and unrelated to the current automotive industry. 
Even though with this amount of data, machine learning may not be 

accurate, here we lay a foundation of the studies that can bring emission 
prediction to real life. 

Having limited input data also helped us to do analysis, which is 
normally impossible to do in the field of AI due to the large quantities of 
data. We have tested all major machine learning algorithms, analyzed 
them, and extracted the learned knowledge from them. These models 

mostly performed as expected with the exception of Bayesian, which 
underperformed, and linear regression, which overperformed. 

We showed that with all its limitations and scarce input data, ma-
chine learning can still be beneficial, can predict with an acceptable 
error, and will help to shape the future of emission research. 

Part of this paper includes a very unconventional method of skewed 
data in order to increase the number of input data and see the perfor-
mance of machine learning. It could be seen that by having more data, 

Fig. 6. The RMSE for different machine learning models for different inputs: BDT = Boosted decision tree, NN = Neural network, DF = Decision Forest, LR = Linear 
regression. The lines show the minimum and the maximum error of the prediction for the model. 
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Fig. 7. The difference in RMSE between the models by using skewed data. We have used 3× and 6× data.  

Fig. 8. The effect of the input matrix in different machine learning models. Generally, input with more details produces a better prediction except for the Bayesian 
regression model. 

Fig. 9. The result of the cross-validation of the machine learning models. The Bayesian model error was the highest, and the linear regression error was the lowest. 
The error bars are standard deviations. 
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we can generally expect a better performance in all the models. Some 
models, like the Bayesian, could benefit a little more, and some, like 
linear regression, tend to be less sensitive. 

We have a long way ahead of us to have a general AI that can look at 
some scarce data, find a trend, and predict. A good predictive AI in the 
complex field of emissions will help us to make better environmental 
decisions. 
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